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Is there a signal present
in the data?

How is the signal parameterized
and what are the estimates for
the parameters?

What new science have we
gained from the data?



Talk Outline

1. Bayesian Model Comparison

2. Galactic Binary Evolutions

3. Other Applications
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-i_ Bayes’ Theorem

® P(A|B) = probability of proposition A conditional on
proposition B being true

o Bayes’ Theorem:

P(D/Ha, 1)
P(D|T)

P(Ha|D,T) = P(Ho|Z)

H. = Hypothesis D = Data 7 = Prior Information
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P(D/Ha, 1)
P(D|T)
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® (Odds Ratio:
Oy o = P(H1|D,T) _ P(H1|Z)P(D|H1,7)
Y27 P(Ho|D,Z) ~ P(Hs|T)P(D|Ha, 1)
P(D|H1,1)
(
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-I_ Model Evidence and Occam’s Factor

# Model Evidence (Global Likelihood for H,,)
P(D|H,, T) = / P(Ha. T)P(D|Ne. Ho, T) de

A

ML

P(D|AH,, 1)

POMI) Oh

A Occam’s Factor

~ ) ke /

O\
P(D|HQ,I) ~ P(D‘)\ML,HO“I)A—)\
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-|_ Points of Emphasis

® LISA’s data is inherently noisy.

#® Parameter estimation is not enough. Models must also
be penalized for using too many parameters.
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e Classes of White Dwarf Binaries

Detached

Semi-detached

df .
pn = GR 4 Astrophysics

Coalescing

Stroeer, Vecchio, & Nelemans, ApJ 633, L33 (2005)
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=2 Binary Frequency Evolution

o Given the data and prior information, when are we
justified in fitting for a frequency evolution?

Monochromatic model: X,, = {4, f, o}
Ho (t; Xm) = Acos(2m ft + @)
Chirping model: X. = {A, f, f, v}

H(t; Xc) = Acos(2m ft + 7Tft2 + o)

# Given the data and prior information, which model is
most probable?
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Odds Ratio for the Binary Models
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Other LISA Data Applications

,L Jﬂ .“]Maw,l, How many galactic binary signals are
FHTTTmEE MM present in this spectrum snippet?

What post-Newtonian order is needed
for characterizing a SMBH binary inspiral?

Do we really need to fit for
all those EMRI parameters?
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Wrap Up

# Before characterizing a signal, we are required to pick a

Rubbo

model.

Bayesian model comparison gives a logical and
guantitative way to directly compare competing models.

Bayesian model comparison has a number of
applications for LISA data analysis.

When it comes to the problems of signal detection and
characterization we don’t need to use a sledgehammer
on a push pin.
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